In Vitro Assembly and Cellulolytic Activity of a Beta-Glucosidase-Integrated Cellulosome
Complex.
Hirano, K., Saito, T., Shinoda, S., Haruki, M., and Hirano, N. FEMS Microbiol. Lett. (2019) 366, fnz209.
Comparative Biochemical Analysis of Cellulosomes Isolated from Clostridium clariflavum DSM 19732 and Clostridium thermocellum ATCC 27405 Grown on Plant Biomass.
Shinoda, S., Kurosaki, M., Kokuzawa, T., Hirano, K., Takano, H., Ueda,
K., Haruki, M., and Hirano, N. Appl. Biochem. Biotechnol. (2019) 187, 994-1010.
Alkyne-Functionalized Cationic Polysiloxane Polymers Conjugated with Targeting
Molecules by Click Reactions for Targeted DNA Delivery.
Kihara, Y., Maeda, R., Imaizumi, A., Ichikawa, T., Nemoto, N., Ishihara,
T., Hirano, N., and Haruki, M. J. Nanosci. Nanotech. (2017) 17, 5081-5089.
Enzymatic Diversity of the Clostridium thermocellum Cellulosome Is Crucial for the Degradation of Crystalline Cellulose and
Plant Biomass.
Hirano, K., Kurosaki, M., Nihei, S., Hasegawa, H., Shinoda, S., Haruki,
M., and Hirano, N. Sci. Rep. (2016) 6, 35709.
Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for
the Degradation of Crystalline Cellulose, as Revealed by In Vitro Reconstitution of the Clostridium thermocellum Cellulosome.
Hirano, K., Nihei, S., Hasegawa, H., Haruki, M., and Hirano, N. Appl. Environ. Microbiol. (2015) 81, 4756-4766. "Spotlight" of the Volume 81, Issue 14 "Articles of Significant Interest Selected from This Issue by the
Editors"
Protein Stabilization Utilizing a Redefined Codon.
Ohtake, K., Yamaguchi, A., Mukai, T., Kashimura, H., Hirano, N., Haruki,
M., Kohashi, S., Yamagishi, K., Murayama, K., Tomabechi, Y., Itagaki, T.,
Akasaka, R., Kawazoe, M., Takemoto C., Shirouzu, M., Yokoyama, S., and
Sakamoto, K. Sci. Rep. (2015) 5, 9762.
Synthesis of Alkyne-Functionalized Amphiphilic Polysiloxane Polymers and
Formation of Nanoemulsions Conjugated with Bioactive Molecules by Click
Reactions.
Kihara, Y., Ichikawa, T., Nemoto, N., Ishihara, T., Hirano, N., and Haruki,
M. Polymer J. (2014) 46, 175-183.
Cell-Free Protein Synthesis and Substrate Specificity of Full-Length Endoglucanase
CelJ (Cel9D-Cel44A), the Largest Multi-Enzyme Subunit of the Clostridium thermocellum Cellulosome.
Hirano, N., Hasegawa, H., Nihei, S., and Haruki, M. FEMS Microbiol. Lett.(2013) 344, 25-30.
TG1 Integrase-Based System for Site-Specific Gene Integration into Bacterial
Genomes.
Muroi, T., Kokuzawa, T., Kihara, Y., Kobayashi, R., Hirano, N., Takahashi,
H., and Haruki, M. Appl. Microbiol. Biotechnol. (2013) 97, 4039-4048.
Enhancement of the Enzymatic Activity of Escherichia coli Acetyl Esterase by a Double Mutation Obtained from Random Mutagenesis.
Kobayashi, R., Hirano, N., Kanaya, S., and Haruki, M. Biosci. Biotechnol. Biochem. (2012) 76, 2082-2088.
Site-Specific Genome Integration in Alphaproteobacteria Mediated by TG1
Integrase.
Morita, K., Morimura, K., Fusada, N., Komatsu, M., Ikeda, H., Hirano, N.,
and Takahashi, H. Appl. Microbiol. Biotechnol. (2012) 93, 295-304.
Site-Specific Recombinases as Tools for Heterologous Gene Integration.
Hirano, N., Muroi, T., Takahashi, H., and Haruki, M. Appl. Microbiol. Biotechnol. (2011) 92, 227-239. "Invited Review"
Site-Specific Recombination System Based on Actinophage TG1 Integrase for
Gene Integration into Bacterial Genomes.
Hirano, N., Muroi, T., Kihara, Y., Kobayashi, R., Takahashi, H., and Haruki,
M. Appl. Microbiol. Biotechnol. (2011) 89, 1877-1884.
Enhancement of the Enzymatic Activity of Escherichia coliAcetyl Esterase by Random Mutagenesis.
Kobayashi, R., Hirano, N., Kanaya, S., Saito, I., and Haruki, M. J. Mol. Catalysis B: Enzymatic (2010) 67, 155-161.
In Vitro Characterization of the Site-Specific Recombination System Based on Actinophage
TG1 Integrase.
Morita, K., Yamamoto, T., Fusada, N., Komatsu, M., Ikeda, H., Hirano, N.,
and Takahashi, H. Mol. Genet. Genomics (2009) 282, 607-616.
The Site-Specific Recombination System of Actinophage TG1.
Morita, K., Yamamoto, T., Fusada, N., Komatsu, M., Ikeda, H., Hirano, N.,
and Takahashi, H. FEMSMicrobiol. Lett. (2009) 297, 234-240.
The Ser176 of T4 Endonuclease IV Is Crucial for the Restricted and Polarized dC-Specific
Cleavage of Single-Stranded DNA Implicated in Restriction of dC-Containing
DNA in Host Escherichia coli.
Hirano, N., Ohshima, H., Sakashita, H., and Takahashi, H. Nucleic Acids Res. (2007) 35, 6692-6700.
A Hexanucleotide Sequence (dC1-dC6 Tract) Restricts the dC-Specific Cleavage of Single-Stranded DNA by Endonuclease
IV of Bacteriophage T4.
Ohshima, H., Hirano, N., and Takahashi, H. Nucleic Acids Res. (2007) 35, 6681-6689.
Biochemical Analysis of the Substrate Specificity and Sequence Preference
of Endonuclease IV from Bacteriophage T4, a dC-Specific Endonuclease Implicated
in Restriction of dC-Substituted T4 DNA Synthesis.
Hirano, N., Ohshima, H., and Takahashi, H. Nucleic Acids Res. (2006) 34, 4743-4751.
Tolerance for Random Recombination of Domains in Prokaryotic and Eukaryotic
Translation Systems: Limited Inter-Domain Misfolding in a Eukaryotic Translation
System.
Hirano, N., Sawasaki, T., Tozawa, Y., Endo, Y., and Takai, K. Proteins (2006) 64, 343-354.
Efficient Cleavage of RNA at High Temperatures by a Thermostable DNA-Linked
Ribonuclease H.
Haruki, M., Nogawa, T., Hirano, N., Chon, H., Tsunaka, Y., Morikawa, M.,
and Kanaya, S. Protein Eng. (2000) 13, 881-886.
Enhancement of the Enzymatic Activity of Ribonuclease HI from Thermus thermophilus HB8 with a Suppressor Mutation Method.
Hirano, N., Haruki, M., Morikawa, M., and Kanaya, S. Biochemistry (2000) 39, 13285-13294.
Stabilization of Ribonuclease HI from Thermus thermophilusHB8 by the Spontaneous Formation of an Intramolecular Disulfide Bond.
Hirano, N., Haruki, M., Morikawa, M., and Kanaya, S. Biochemistry (1998) 37, 12640-12648.
著書
T4 denB Gene Product, an Endonuclease (Endo IV) Targeting at the Achilles’ Tendon
of DNA Replication.
Hirano, N., Ohshima, H., and Takahashi, H. - Adaptive Gene Regulations – from Microorganisms to Organelles -
Fujiwara, M., Tanaka, K., and Takahashi, H. (Ed.)
Research Signpost, Kerala, India. (2008) 135-148.